Papers
Topics
Authors
Recent
Search
2000 character limit reached

Curvature Regularization to Prevent Distortion in Graph Embedding

Published 28 Nov 2020 in cs.LG, cs.CV, and stat.ML | (2011.14211v1)

Abstract: Recent research on graph embedding has achieved success in various applications. Most graph embedding methods preserve the proximity in a graph into a manifold in an embedding space. We argue an important but neglected problem about this proximity-preserving strategy: Graph topology patterns, while preserved well into an embedding manifold by preserving proximity, may distort in the ambient embedding Euclidean space, and hence to detect them becomes difficult for machine learning models. To address the problem, we propose curvature regularization, to enforce flatness for embedding manifolds, thereby preventing the distortion. We present a novel angle-based sectional curvature, termed ABS curvature, and accordingly three kinds of curvature regularization to induce flat embedding manifolds during graph embedding. We integrate curvature regularization into five popular proximity-preserving embedding methods, and empirical results in two applications show significant improvements on a wide range of open graph datasets.

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.