Papers
Topics
Authors
Recent
2000 character limit reached

Construction of Rank $2$ Indecomposable Modules in Grassmannian Cluster Categories

Published 28 Nov 2020 in math.RT and math.RA | (2011.14176v2)

Abstract: The category ${\rm CM}(B_{k,n}) $ of Cohen-Macaulay modules over a quotient $B_{k,n}$ of a preprojective algebra provides a categorification of the cluster algebra structure on the coordinate ring of the Grassmannian variety of $k$-dimensional subspaces in $\mathbb Cn$, \cite{JKS16}. Among the indecomposable modules in this category are the rank $1$ modules which are in bijection with $k$-subsets of ${1,2,\dots,n}$, and their explicit construction has been given by Jensen, King and Su. These are the building blocks of the category as any module in ${\rm CM}(B_{k,n}) $ can be filtered by them. In this paper we give an explicit construction of rank 2 modules. With this, we give all indecomposable rank 2 modules in the cases when $k=3$ and $k=4$. In particular, we cover the tame cases and go beyond them. We also characterise the modules among them which are uniquely determined by their filtrations. For $k\ge 4$, we exhibit infinite families of non-isomorphic rank 2 modules having the same filtration.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.