Papers
Topics
Authors
Recent
2000 character limit reached

Deep Representation for Connected Health: Semi-supervised Learning for Analysing the Risk of Urinary Tract Infections in People with Dementia

Published 27 Nov 2020 in cs.LG | (2011.13916v4)

Abstract: Machine learning techniques combined with in-home monitoring technologies provide a unique opportunity to automate diagnosis and early detection of adverse health conditions in long-term conditions such as dementia. However, accessing sufficient labelled training samples and integrating high-quality, routinely collected data from heterogeneous in-home monitoring technologies are main obstacles hindered utilising these technologies in real-world medicine. This work presents a semi-supervised model that can continuously learn from routinely collected in-home observation and measurement data. We show how our model can process highly imbalanced and dynamic data to make robust predictions in analysing the risk of Urinary Tract Infections (UTIs) in dementia. UTIs are common in older adults and constitute one of the main causes of avoidable hospital admissions in people with dementia (PwD). Health-related conditions, such as UTI, have a lower prevalence in individuals, which classifies them as sporadic cases (i.e. rare or scattered, yet important events). This limits the access to sufficient training data, without which the supervised learning models risk becoming overfitted or biased. We introduce a probabilistic semi-supervised learning framework to address these issues. The proposed method produces a risk analysis score for UTIs using routinely collected data by in-home sensing technologies.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.