Papers
Topics
Authors
Recent
2000 character limit reached

Representation of 2D frame less visual space as a neural manifold and its information geometric interpretation (2011.13585v1)

Published 27 Nov 2020 in cs.NE

Abstract: Representation of 2D frame less visual space as neural manifold and its modelling in the frame work of information geometry is presented. Origin of hyperbolic nature of the visual space is investigated using evidences from neuroscience. Based on the results we propose that the processing of spatial information, particularly estimation of distance, perceiving geometrical curves etc. in the human brain can be modeled in a parametric probability space endowed with Fisher-Rao metric. Compactness, convexity and differentiability of the space is analysed and found that they obey the axioms of G space, proposed by Busemann. Further it is shown that it can be considered as a homogeneous Riemannian space of constant negative curvature. It is therefore ensured that the space yields geodesics into it. Computer simulation of geodesics representing a number of visual phenomena and advocating the hyperbolic structure of visual space is carried out. Comparison of the simulated results with the published experimental data is presented.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.