Papers
Topics
Authors
Recent
2000 character limit reached

Faster Projective Clustering Approximation of Big Data

Published 26 Nov 2020 in cs.DS | (2011.13476v1)

Abstract: In projective clustering we are given a set of n points in $Rd$ and wish to cluster them to a set $S$ of $k$ linear subspaces in $Rd$ according to some given distance function. An $\eps$-coreset for this problem is a weighted (scaled) subset of the input points such that for every such possible $S$ the sum of these distances is approximated up to a factor of $(1+\eps)$. We suggest to reduce the size of existing coresets by suggesting the first $O(\log(m))$ approximation for the case of $m$ lines clustering in $O(ndm)$ time, compared to the existing $\exp(m)$ solution. We then project the points on these lines and prove that for a sufficiently large $m$ we obtain a coreset for projective clustering. Our algorithm also generalize to handle outliers. Experimental results and open code are also provided.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.