Formalising Ordinal Partition Relations Using Isabelle/HOL (2011.13218v3)
Abstract: This is an overview of a formalisation project in the proof assistant Isabelle/HOL of a number of research results in infinitary combinatorics and set theory (more specifically in ordinal partition relations) by Erd\H{o}s--Milner, Specker, Larson and Nash-Williams, leading to Larson's proof of the unpublished result by E.C. Milner asserting that for all $m \in \mathbb{N}$, $\omega\omega\arrows(\omega\omega, m)$. This material has been recently formalised by Paulson and is available on the Archive of Formal Proofs; here we discuss some of the most challenging aspects of the formalisation process. This project is also a demonstration of working with Zermelo-Fraenkel set theory in higher-order logic.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.