Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Explainable Tensorized Neural Ordinary Differential Equations forArbitrary-step Time Series Prediction (2011.13174v1)

Published 26 Nov 2020 in cs.LG

Abstract: We propose a continuous neural network architecture, termed Explainable Tensorized Neural Ordinary Differential Equations (ETN-ODE), for multi-step time series prediction at arbitrary time points. Unlike the existing approaches, which mainly handle univariate time series for multi-step prediction or multivariate time series for single-step prediction, ETN-ODE could model multivariate time series for arbitrary-step prediction. In addition, it enjoys a tandem attention, w.r.t. temporal attention and variable attention, being able to provide explainable insights into the data. Specifically, ETN-ODE combines an explainable Tensorized Gated Recurrent Unit (Tensorized GRU or TGRU) with Ordinary Differential Equations (ODE). The derivative of the latent states is parameterized with a neural network. This continuous-time ODE network enables a multi-step prediction at arbitrary time points. We quantitatively and qualitatively demonstrate the effectiveness and the interpretability of ETN-ODE on five different multi-step prediction tasks and one arbitrary-step prediction task. Extensive experiments show that ETN-ODE can lead to accurate predictions at arbitrary time points while attaining best performance against the baseline methods in standard multi-step time series prediction.

Citations (10)

Summary

We haven't generated a summary for this paper yet.