Papers
Topics
Authors
Recent
2000 character limit reached

Lifting 2D StyleGAN for 3D-Aware Face Generation

Published 26 Nov 2020 in cs.CV | (2011.13126v2)

Abstract: We propose a framework, called LiftedGAN, that disentangles and lifts a pre-trained StyleGAN2 for 3D-aware face generation. Our model is "3D-aware" in the sense that it is able to (1) disentangle the latent space of StyleGAN2 into texture, shape, viewpoint, lighting and (2) generate 3D components for rendering synthetic images. Unlike most previous methods, our method is completely self-supervised, i.e. it neither requires any manual annotation nor 3DMM model for training. Instead, it learns to generate images as well as their 3D components by distilling the prior knowledge in StyleGAN2 with a differentiable renderer. The proposed model is able to output both the 3D shape and texture, allowing explicit pose and lighting control over generated images. Qualitative and quantitative results show the superiority of our approach over existing methods on 3D-controllable GANs in content controllability while generating realistic high quality images.

Citations (79)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.