Papers
Topics
Authors
Recent
2000 character limit reached

Right for the Right Concept: Revising Neuro-Symbolic Concepts by Interacting with their Explanations

Published 25 Nov 2020 in cs.LG and cs.AI | (2011.12854v6)

Abstract: Most explanation methods in deep learning map importance estimates for a model's prediction back to the original input space. These "visual" explanations are often insufficient, as the model's actual concept remains elusive. Moreover, without insights into the model's semantic concept, it is difficult -- if not impossible -- to intervene on the model's behavior via its explanations, called Explanatory Interactive Learning. Consequently, we propose to intervene on a Neuro-Symbolic scene representation, which allows one to revise the model on the semantic level, e.g. "never focus on the color to make your decision". We compiled a novel confounded visual scene data set, the CLEVR-Hans data set, capturing complex compositions of different objects. The results of our experiments on CLEVR-Hans demonstrate that our semantic explanations, i.e. compositional explanations at a per-object level, can identify confounders that are not identifiable using "visual" explanations only. More importantly, feedback on this semantic level makes it possible to revise the model from focusing on these factors.

Citations (97)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.