Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solving The Lunar Lander Problem under Uncertainty using Reinforcement Learning (2011.11850v1)

Published 24 Nov 2020 in cs.LG

Abstract: Reinforcement Learning (RL) is an area of machine learning concerned with enabling an agent to navigate an environment with uncertainty in order to maximize some notion of cumulative long-term reward. In this paper, we implement and analyze two different RL techniques, Sarsa and Deep QLearning, on OpenAI Gym's LunarLander-v2 environment. We then introduce additional uncertainty to the original problem to test the robustness of the mentioned techniques. With our best models, we are able to achieve average rewards of 170+ with the Sarsa agent and 200+ with the Deep Q-Learning agent on the original problem. We also show that these techniques are able to overcome the additional uncertainities and achieve positive average rewards of 100+ with both agents. We then perform a comparative analysis of the two techniques to conclude which agent peforms better.

Citations (11)

Summary

We haven't generated a summary for this paper yet.