Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Some inequalities on Binomial and Poisson probabilities (2011.11795v2)

Published 23 Nov 2020 in math.PR

Abstract: Let $S$ and $X$ be independent random variables, assuming values in the set of non-negative integers, and suppose further that both $\mathbb{E}(S)$ and $\mathbb{E}(X)$ are integers satisfying $\mathbb{E}(S)\ge \mathbb{E}(X)$. We establish a sufficient condition for the tail probability $\mathbb{P}(S\ge \mathbb{E}(S))$ to be larger than $\mathbb{P}(S+X\ge \mathbb{E}(S+X))$. We also apply this result to sums of independent binomial and Poisson random variables.

Summary

We haven't generated a summary for this paper yet.