Papers
Topics
Authors
Recent
2000 character limit reached

Synthesis and Pruning as a Dynamic Compression Strategy for Efficient Deep Neural Networks (2011.11358v1)

Published 23 Nov 2020 in cs.AI

Abstract: The brain is a highly reconfigurable machine capable of task-specific adaptations. The brain continually rewires itself for a more optimal configuration to solve problems. We propose a novel strategic synthesis algorithm for feedforward networks that draws directly from the brain's behaviours when learning. The proposed approach analyses the network and ranks weights based on their magnitude. Unlike existing approaches that advocate random selection, we select highly performing nodes as starting points for new edges and exploit the Gaussian distribution over the weights to select corresponding endpoints. The strategy aims only to produce useful connections and result in a smaller residual network structure. The approach is complemented with pruning to further the compression. We demonstrate the techniques to deep feedforward networks. The residual sub-networks that are formed from the synthesis approaches in this work form common sub-networks with similarities up to ~90%. Using pruning as a complement to the strategic synthesis approach, we observe improvements in compression.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.