Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

On Fields of dimension one that are Galois extensions of a global or local field (2011.11135v1)

Published 22 Nov 2020 in math.NT

Abstract: Let $K$ be a global or local field, $E/K$ a Galois extension, and Br$(E)$ the Brauer group of $E$. This paper shows that if $K$ is a local field, $v$ is its natural discrete valuation, $v'$ is the valuation of $E$ extending $v$, and $q$ is the characteristic of the residue field $\widehat E$ of $(E, v')$, then Br$(E) = {0}$ if and only if the following conditions hold: $\widehat E$ contains as a subfield the maximal $p$-extension of $\widehat K$, for each prime $p \neq q$; $\widehat E$ is an algebraically closed field in case the value group $v'(E)$ is $q$-indivisible. When $K$ is a global field, it characterizes the fields $E$ with Br$(E) = {0}$, which lie in the class of tame abelian extensions of $K$. We also give a criterion that, in the latter case, for any integer $n \ge 2$, there exists an $n$-variate $E$-form of degree $n$, which violates the Hasse principle.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.