Papers
Topics
Authors
Recent
Search
2000 character limit reached

Finite size effects in the microscopic critical properties of jammed configurations: A comprehensive study of the effects of different types of disorder

Published 22 Nov 2020 in cond-mat.dis-nn, cond-mat.soft, and cond-mat.stat-mech | (2011.10899v3)

Abstract: Jamming criticality defines a universality class that includes systems as diverse as glasses, colloids, foams, amorphous solids, constraint satisfaction problems, neural networks, etc. A particularly interesting feature of this class is that small interparticle forces ($f$) and gaps ($h$) are distributed according to nontrivial power laws. A recently developed mean-field (MF) theory predicts the characteristic exponents of these distributions in the limit of very high spatial dimension, $d\rightarrow\infty$ and, remarkably, their values seemingly agree with numerical estimates in physically relevant dimensions, $d=2$ and $3$. These exponents are further connected through a pair of inequalities derived from stability conditions, and both theoretical predictions and previous numerical investigations suggest that these inequalities are saturated. Systems at the jamming point are thus only marginally stable. Despite the key physical role played by these exponents, their systematic evaluation has yet to be attempted. Here, we carefully test their value by analyzing the finite-size scaling of the distributions of $f$ and $h$ for various particle-based models for jamming. Both dimension and the direction of approach to the jamming point are also considered. We show that, in all models, finite-size effects are much more pronounced in the distribution of $h$ than in that of $f$. We thus conclude that gaps are correlated over considerably longer scales than forces. Additionally, remarkable agreement with MF predictions is obtained in all but one model, namely near-crystalline packings. Our results thus help to better delineate the domain of the jamming universality class. We furthermore uncover a secondary linear regime in the distribution tails of both $f$ and $h$. This surprisingly robust feature is understood to follow from the (near) isostaticity of our configurations.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.