Papers
Topics
Authors
Recent
Search
2000 character limit reached

Adversarial Classification: Necessary conditions and geometric flows

Published 21 Nov 2020 in cs.LG, cs.CR, math.AP, and stat.ML | (2011.10797v2)

Abstract: We study a version of adversarial classification where an adversary is empowered to corrupt data inputs up to some distance $\varepsilon$, using tools from variational analysis. In particular, we describe necessary conditions associated with the optimal classifier subject to such an adversary. Using the necessary conditions, we derive a geometric evolution equation which can be used to track the change in classification boundaries as $\varepsilon$ varies. This evolution equation may be described as an uncoupled system of differential equations in one dimension, or as a mean curvature type equation in higher dimension. In one dimension, and under mild assumptions on the data distribution, we rigorously prove that one can use the initial value problem starting from $\varepsilon=0$, which is simply the Bayes classifier, in order to solve for the global minimizer of the adversarial problem for small values of $\varepsilon$. In higher dimensions we provide a similar result, albeit conditional to the existence of regular solutions of the initial value problem. In the process of proving our main results we obtain a result of independent interest connecting the original adversarial problem with an optimal transport problem under no assumptions on whether classes are balanced or not. Numerical examples illustrating these ideas are also presented.

Citations (18)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.