Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Multi Time-scale Imputation aided State Estimation in Distribution System (2011.10738v1)

Published 21 Nov 2020 in eess.SY and cs.SY

Abstract: With the transition to a smart grid, we are witnessing a significant growth in sensor deployments and smart metering infrastructure in the distribution system. However, information from these sensors and meters are typically unevenly sampled at different time-scales and are incomplete. It is critical to effectively aggregate these information sources for situational awareness. In order to reconcile the heterogeneous multi-scale time-series data, we present a multi-task Gaussian process framework. This framework exploits the spatio-temporal correlation across the time-series data to impute data at any desired time-scale while providing confidence bounds on the imputations. The value of the imputed data for distribution system operation is illustrated via a matrix completion based state estimation strategy. Results on the IEEE 37 bus distribution system reveals the superior performance of the proposed approach relative to linear interpolation approaches.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.