Papers
Topics
Authors
Recent
2000 character limit reached

Born Identity Network: Multi-way Counterfactual Map Generation to Explain a Classifier's Decision (2011.10381v4)

Published 20 Nov 2020 in cs.CV, cs.AI, and cs.LG

Abstract: There exists an apparent negative correlation between performance and interpretability of deep learning models. In an effort to reduce this negative correlation, we propose a Born Identity Network (BIN), which is a post-hoc approach for producing multi-way counterfactual maps. A counterfactual map transforms an input sample to be conditioned and classified as a target label, which is similar to how humans process knowledge through counterfactual thinking. For example, a counterfactual map can localize hypothetical abnormalities from a normal brain image that may cause it to be diagnosed with a disease. Specifically, our proposed BIN consists of two core components: Counterfactual Map Generator and Target Attribution Network. The Counterfactual Map Generator is a variation of conditional GAN which can synthesize a counterfactual map conditioned on an arbitrary target label. The Target Attribution Network provides adequate assistance for generating synthesized maps by conditioning a target label into the Counterfactual Map Generator. We have validated our proposed BIN in qualitative and quantitative analysis on MNIST, 3D Shapes, and ADNI datasets, and showed the comprehensibility and fidelity of our method from various ablation studies.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.