Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 180 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Topological obstructions to quantum computation with unitary oracles (2011.10031v3)

Published 19 Nov 2020 in quant-ph

Abstract: Algorithms with unitary oracles can be nested, which makes them extremely versatile. An example is the phase estimation algorithm used in many candidate algorithms for quantum speed-up. The search for new quantum algorithms benefits from understanding their limitations: Some tasks are impossible in quantum circuits, although their classical versions are easy, for example, cloning. An example with a unitary oracle $U$ is the if clause, the task to implement controlled $U$ (up to the phase on $U$). In classical computation the conditional statement is easy and essential. In quantum circuits the if clause was shown impossible from one query to $U$. Is it possible from polynomially many queries? Here we unify algorithms with a unitary oracle and develop a topological method to prove their limitations: No number of queries to $U$ and $U\dagger$ lets quantum circuits implement the if clause, even if admitting approximations, postselection and relaxed causality. We also show limitations of process tomography, oracle neutralization, and $\sqrt[\dim U]{U}$, $UT$, and $U\dagger$ algorithms. Our results strengthen an advantage of linear optics, challenge the experiments on relaxed causality, and motivate new algorithms with many-outcome measurements.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (82)
  1. P. W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings 35th annual symposium on foundations of computer science, pages 124–134. IEEE, 1994.
  2. Quantum algorithm for linear systems of equations. Physical review letters, 103(15):150502, 2009.
  3. Quantum speed-ups for solving semidefinite programs. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pages 415–426. IEEE, 2017.
  4. Quantum SDP-solvers: Better upper and lower bounds. Quantum, 4:230, 2020.
  5. Quantum metropolis sampling. Nature, 471(7336):87–90, 2011.
  6. Simulation of electronic structure hamiltonians using quantum computers. Molecular Physics, 109(5):735–750, 2011.
  7. A. Y. Kitaev. Quantum measurements and the abelian stabilizer problem. arXiv:quant-ph/9511026.
  8. Quantum lower bounds by polynomials. Journal of the ACM (JACM), 48(4):778–797, 2001.
  9. Strengths and weaknesses of quantum computing. SIAM journal on Computing, 26(5):1510–1523, 1997.
  10. A. Ambainis. Quantum lower bounds by quantum arguments. In Proceedings of the thirty-second annual ACM symposium on Theory of computing, pages 636–643, 2000.
  11. Negative weights make adversaries stronger. In Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, pages 526–535, 2007.
  12. L. K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pages 212–219, 1996.
  13. A single quantum cannot be cloned. Nature, 299(5886):802–803, 1982.
  14. Impossibility of deleting an unknown quantum state. Nature, 404(6774):164–165, 2000.
  15. Optimal manipulations with qubits: Universal-not gate. Physical Review A, 60(4):R2626, 1999.
  16. Programmable quantum gate arrays. Physical Review Letters, 79(2):321, 1997.
  17. Quantum cryptography. Reviews of modern physics, 74(1):145, 2002.
  18. Probabilistic theories with purification. Physical Review A, 81(6):062348, 2010.
  19. B. Coecke and R. Duncan. Interacting quantum observables: categorical algebra and diagrammatics. New Journal of Physics, 13(4):043016, 2011.
  20. A. Kent. Quantum tasks in minkowski space. Classical and Quantum Gravity, 29(22):224013, 2012.
  21. W. H. Zurek. Quantum darwinism. Nature physics, 5(3):181–188, 2009.
  22. P. M. Vitányi. Quantum kolmogorov complexity based on classical descriptions. IEEE Transactions on Information Theory, 47(6):2464–2479, 2001.
  23. V. Bužek and M. Hillery. Quantum copying: Beyond the no-cloning theorem. Physical Review A, 54(3):1844, 1996.
  24. Quantum copying: A network. Physical Review A, 56(5):3446, 1997.
  25. Probabilistic cloning and identification of linearly independent quantum states. Physical review letters, 80(22):4999, 1998.
  26. Approximate programmable quantum processors. Physical Review A, 73(2):022345, 2006.
  27. Optimal universal programming of unitary gates. Physical Review Letters, 125(21):210501, 2020.
  28. Storing quantum dynamics in quantum states: A stochastic programmable gate. Physical review letters, 88(4):047905, 2002.
  29. Optimal probabilistic storage and retrieval of unitary channels. Physical review letters, 122(17):170502, 2019.
  30. S. Ishizaka and T. Hiroshima. Quantum teleportation scheme by selecting one of multiple output ports. Physical Review A, 79(4):042306, 2009.
  31. A. Chefles and S. M. Barnett. Strategies and networks for state-dependent quantum cloning. Physical Review A, 60(1):136, 1999.
  32. N. Gisin and S. Massar. Optimal quantum cloning machines. Physical review letters, 79(11):2153, 1997.
  33. Optimal universal quantum cloning and state estimation. Physical review letters, 81(12):2598, 1998.
  34. M. Keyl and R. F. Werner. Optimal cloning of pure states, testing single clones. Journal of Mathematical Physics, 40(7):3283–3299, 1999.
  35. R. F. Werner. Optimal cloning of pure states. Physical Review A, 58(3):1827, 1998.
  36. Quantum circuits cannot control unknown operations. New Journal of Physics, 16(9):093026, 2014.
  37. Complex conjugation supermap of unitary quantum maps and its universal implementation protocol. Physical Review Research, 1(1):013007, 2019.
  38. Reversing unknown quantum transformations: Universal quantum circuit for inverting general unitary operations. Physical Review Letters, 123(21):210502, 2019.
  39. Probabilistic exact universal quantum circuits for transforming unitary operations. Physical Review A, 100(6):062339, 2019.
  40. Approximating fractional time quantum evolution. Journal of Physics A: Mathematical and Theoretical, 42(18):185302, 2009.
  41. Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 193–204, 2019.
  42. A. Bogdanov and L. Trevisan. Average-case complexity. Foundations and Trends® in Theoretical Computer Science, 2(1):1–106, 2006.
  43. Quantum computations without definite causal structure. Physical Review A, 88(2):022318, 2013.
  44. Quantum correlations with no causal order. Nature communications, 3(1):1092, 2012.
  45. O. Oreshkov. Time-delocalized quantum subsystems and operations: on the existence of processes with indefinite causal structure in quantum mechanics. Quantum, 3:206, 2019.
  46. N. Paunković and M. Vojinović. Causal orders, quantum circuits and spacetime: distinguishing between definite and superposed causal orders. Quantum, 4:275, 2020.
  47. Experimental superposition of orders of quantum gates. Nature communications, 6(1):7913, 2015.
  48. Indefinite causal order in a quantum switch. Physical review letters, 121(9):090503, 2018.
  49. Experimental verification of an indefinite causal order. Science advances, 3(3):e1602589, 2017.
  50. Elementary gates for quantum computation. Physical review A, 52(5):3457, 1995.
  51. M. A. Nielsen and I. Chuang. Quantum computation and quantum information, 2002.
  52. A. Soeda. Limitations on quantum subroutine designing due to the linear structure of quantum operators. In The 3rd International Conference on Quantum Information and Technology (ICQIT2013). NII, Tokyo, 2013.
  53. Quantum plug n’play: modular computation in the quantum regime. New Journal of Physics, 20(1):013004, 2018.
  54. Controlled quantum operations and combs, and their applications to universal controllization of divisible unitary operations. arXiv:1911.01645.
  55. S. Aaronson. The ten most annoying questions in quantum computing, 2006. Retrieved from https://scottaaronson.blog/?p=112.
  56. E. L. Hahn. Spin echoes. Physical review, 80(4):580, 1950.
  57. R. P. Feynman. Simulating physics with computers. Int. j. Theor. phys, 21(6/7), 1982.
  58. D. S. Abrams and S. Lloyd. Simulation of many-body fermi systems on a universal quantum computer. Physical Review Letters, 79(13):2586, 1997.
  59. Fermionic quantum computation. Annals of Physics, 298(1):210–226, 2002.
  60. S. Aaronson and A. Arkhipov. The computational complexity of linear optics. In Proceedings of the forty-third annual ACM symposium on Theory of computing, pages 333–342, 2011.
  61. Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics, 44(11-12):2455–2467, 1997.
  62. Complete characterization of a quantum process: the two-bit quantum gate. Physical Review Letters, 78(2):390, 1997.
  63. D. W. C. Leung. Towards robust quantum computation. PhD thesis, Stanford university, 2000.
  64. H. Buhrman and R. de Wolf. Complexity measures and decision tree complexity: a survey. Theoretical Computer Science, 288(1):21–43, 2002.
  65. S. Aaronson. Quantum computing, postselection, and probabilistic polynomial-time. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 461(2063):3473–3482, 2005.
  66. Ä. Baumeler and S. Wolf. The space of logically consistent classical processes without causal order. New Journal of Physics, 18(1):013036, 2016.
  67. Z. Gavorová. Notes on distinguishability of postselected computations. arXiv:2011.08487.
  68. K. Borsuk. Drei sätze über die n-dimensionale euklidische sphäre. Fundamenta Mathematicae, 20(1):177–190, 1933.
  69. Projected least-squares quantum process tomography. Quantum, 6:844, 2022.
  70. Quantum circuits with mixed states. In Proceedings of the thirtieth annual ACM symposium on Theory of computing, pages 20–30, 1998.
  71. S. Lloyd. Universal quantum simulators. Science, 273(5278):1073–1078, 1996.
  72. Efficient quantum circuits for schur and clebsch-gordan transforms. Physical review letters, 97(17):170502, 2006.
  73. W. Van Dam and G. Seroussi. Efficient quantum algorithms for estimating gauss sums. arXiv preprint quant-ph/0207131, 2002.
  74. Computational advantage from quantum-controlled ordering of gates. Physical review letters, 113(25):250402, 2014.
  75. L. A. Levin. Average case complete problems. SIAM Journal on Computing, 15(1):285–286, 1986.
  76. Smoothed analysis: an attempt to explain the behavior of algorithms in practice. Communications of the ACM, 52(10):76–84, 2009.
  77. M. Bläser and B. Manthey. Smoothed complexity theory. ACM Transactions on Computation Theory (TOCT), 7(2):1–21, 2015.
  78. A. Blum and J. Dunagan. Smoothed analysis of the perceptron algorithm for linear programming. In Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms, pages 905–914, 2002.
  79. U. Chabaud and S. Mehraban. Holomorphic representation of quantum computations. Quantum, 6:831, 2022.
  80. A. Hatcher. Algebraic topology. Cambridge Univ. Press, 2000.
  81. D. McDuff and D. Salamon. Introduction to symplectic topology. Oxford University Press, 2017.
  82. J. R. Munkres. Topology. Prentice Hall, Inc., Upper Saddle River, NJ, 2000. Second edition of [ MR0464128].
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: