Papers
Topics
Authors
Recent
2000 character limit reached

Adversarial Threats to DeepFake Detection: A Practical Perspective

Published 19 Nov 2020 in cs.CV | (2011.09957v1)

Abstract: Facially manipulated images and videos or DeepFakes can be used maliciously to fuel misinformation or defame individuals. Therefore, detecting DeepFakes is crucial to increase the credibility of social media platforms and other media sharing web sites. State-of-the art DeepFake detection techniques rely on neural network based classification models which are known to be vulnerable to adversarial examples. In this work, we study the vulnerabilities of state-of-the-art DeepFake detection methods from a practical stand point. We perform adversarial attacks on DeepFake detectors in a black box setting where the adversary does not have complete knowledge of the classification models. We study the extent to which adversarial perturbations transfer across different models and propose techniques to improve the transferability of adversarial examples. We also create more accessible attacks using Universal Adversarial Perturbations which pose a very feasible attack scenario since they can be easily shared amongst attackers. We perform our evaluations on the winning entries of the DeepFake Detection Challenge (DFDC) and demonstrate that they can be easily bypassed in a practical attack scenario by designing transferable and accessible adversarial attacks.

Citations (71)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.