Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lifelong Knowledge Learning in Rule-based Dialogue Systems (2011.09811v1)

Published 19 Nov 2020 in cs.AI, cs.HC, and cs.LG

Abstract: One of the main weaknesses of current chatbots or dialogue systems is that they do not learn online during conversations after they are deployed. This is a major loss of opportunity. Clearly, each human user has a great deal of knowledge about the world that may be useful to others. If a chatbot can learn from their users during chatting, it will greatly expand its knowledge base and serve its users better. This paper proposes to build such a learning capability in a rule-based chatbot so that it can continuously acquire new knowledge in its chatting with users. This work is useful because many real-life deployed chatbots are rule-based.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Bing Liu (211 papers)
  2. Chuhe Mei (1 paper)
Citations (14)