Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

$m$-potential theory and $m$-generalized Lelong numbers associated with $m$-positive supercurrents (2011.09668v2)

Published 19 Nov 2020 in math.CV

Abstract: In this study, we first define the local potential associated to a weakly positive closed supercurrent in analogy to the one investigated by Ben Messaoud and El Mir in the complex setting. Next, we study the definition and the continuity of the $m$-superHessian operator for unbounded $m$-convex functions. As an application, we generalize our previous work on Demailly-Lelong numbers and several related results in the superformalism setting. Furthermore, strongly inspired by the complex Hessian theory, we introduce the Cegrell-type classes as well as a generalization of some $m$-potential results in the class of $m$-convex functions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.