Papers
Topics
Authors
Recent
2000 character limit reached

The Pearson Bayes factor: An analytic formula for computing evidential value from minimal summary statistics (2011.09549v2)

Published 18 Nov 2020 in stat.CO and stat.AP

Abstract: In Bayesian hypothesis testing, evidence for a statistical model is quantified by the Bayes factor, which represents the relative likelihood of observed data under that model compared to another competing model. In general, computing Bayes factors is difficult, as computing the marginal likelihood of data under a given model requires integrating over a prior distribution of model parameters. In this paper, I capitalize on a particular choice of prior distribution that allows the Bayes factor to be expressed without integral representation and I develop a simple formula -- the Pearson Bayes factor -- that requires only minimal summary statistics commonly reported in scientific papers, such as the $t$ or $F$ score and the degrees of freedom. In addition to presenting this new result, I provide several examples of its use and report a simulation study validating its performance. Importantly, the Pearson Bayes factor gives applied researchers the ability to compute exact Bayes factors from minimal summary data, and thus easily assess the evidential value of any data for which these summary statistics are provided, even when the original data is not available.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.