Weighted Entropy Modification for Soft Actor-Critic (2011.09083v1)
Abstract: We generalize the existing principle of the maximum Shannon entropy in reinforcement learning (RL) to weighted entropy by characterizing the state-action pairs with some qualitative weights, which can be connected with prior knowledge, experience replay, and evolution process of the policy. We propose an algorithm motivated for self-balancing exploration with the introduced weight function, which leads to state-of-the-art performance on Mujoco tasks despite its simplicity in implementation.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.