Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards evaluating and eliciting high-quality documentation for intelligent systems (2011.08774v1)

Published 17 Nov 2020 in cs.SE and cs.AI

Abstract: A vital component of trust and transparency in intelligent systems built on machine learning and artificial intelligence is the development of clear, understandable documentation. However, such systems are notorious for their complexity and opaqueness making quality documentation a non-trivial task. Furthermore, little is known about what makes such documentation "good." In this paper, we propose and evaluate a set of quality dimensions to identify in what ways this type of documentation falls short. Then, using those dimensions, we evaluate three different approaches for eliciting intelligent system documentation. We show how the dimensions identify shortcomings in such documentation and posit how such dimensions can be use to further enable users to provide documentation that is suitable to a given persona or use case.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. David Piorkowski (17 papers)
  2. Daniel González (2 papers)
  3. John Richards (16 papers)
  4. Stephanie Houde (18 papers)
Citations (9)