Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fine-grained Emotion Strength Transfer, Control and Prediction for Emotional Speech Synthesis (2011.08477v1)

Published 17 Nov 2020 in cs.SD and eess.AS

Abstract: This paper proposes a unified model to conduct emotion transfer, control and prediction for sequence-to-sequence based fine-grained emotional speech synthesis. Conventional emotional speech synthesis often needs manual labels or reference audio to determine the emotional expressions of synthesized speech. Such coarse labels cannot control the details of speech emotion, often resulting in an averaged emotion expression delivery, and it is also hard to choose suitable reference audio during inference. To conduct fine-grained emotion expression generation, we introduce phoneme-level emotion strength representations through a learned ranking function to describe the local emotion details, and the sentence-level emotion category is adopted to render the global emotions of synthesized speech. With the global render and local descriptors of emotions, we can obtain fine-grained emotion expressions from reference audio via its emotion descriptors (for transfer) or directly from phoneme-level manual labels (for control). As for the emotional speech synthesis with arbitrary text inputs, the proposed model can also predict phoneme-level emotion expressions from texts, which does not require any reference audio or manual label.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yi Lei (40 papers)
  2. Shan Yang (58 papers)
  3. Lei Xie (337 papers)
Citations (51)