Papers
Topics
Authors
Recent
2000 character limit reached

ACCORDANT: A Domain Specific Model and DevOpsApproach for Big Data Analytics Architectures

Published 16 Nov 2020 in cs.SE | (2011.08268v1)

Abstract: Big data analytics (BDA) applications use machine learning algorithms to extract valuable insights from large, fast, and heterogeneous data sources. New software engineering challenges for BDA applications include ensuring performance levels of data-driven algorithms even in the presence of large data volume, velocity, and variety (3Vs). BDA software complexity frequently leads to delayed deployments, longer development cycles and challenging performance assessment. This paper proposes a Domain-Specific Model (DSM), and DevOps practices to design, deploy, and monitor performance metrics in BDA applications. Our proposal includes a design process, and a framework to define architectural inputs, software components, and deployment strategies through integrated high-level abstractions to enable QS monitoring. We evaluate our approach with four use cases from different domains to demonstrate a high level of generalization. Our results show a shorter deployment and monitoring times, and a higher gain factor per iteration compared to similar approaches.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.