Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Separability of Hermitian Tensors and PSD Decompositions (2011.08132v2)

Published 16 Nov 2020 in math.OC

Abstract: Hermitian tensors are natural generalizations of Hermitian matrices, while possessing rather different properties. A Hermitian tensor is separable if it has a Hermitian decomposition with only positive coefficients, i.e., it is a sum of rank-1 psd Hermitian tensors. This paper studies how to detect separability of Hermitian tensors. It is equivalent to the long-standing quantum separability problem in quantum physics, which asks to tell if a given quantum state is entangled or not. We formulate this as a truncated moment problem and then provide a semidefinite relaxation algorithm to solve it. Moreover, we study psd decompositions of separable Hermitian tensors. When the psd rank is low, we first flatten them into cubic order tensors and then apply tensor decomposition methods to compute psd decompositions. We prove that this method works well if the psd rank is low. In computation, this flattening approach can detect separability for much larger sized Hermitian tensors. This method is a good start on determining psd ranks of separable Hermitian tensors.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.