Papers
Topics
Authors
Recent
2000 character limit reached

Deep Shallow Fusion for RNN-T Personalization

Published 16 Nov 2020 in cs.CL and eess.AS | (2011.07754v1)

Abstract: End-to-end models in general, and Recurrent Neural Network Transducer (RNN-T) in particular, have gained significant traction in the automatic speech recognition community in the last few years due to their simplicity, compactness, and excellent performance on generic transcription tasks. However, these models are more challenging to personalize compared to traditional hybrid systems due to the lack of external LLMs and difficulties in recognizing rare long-tail words, specifically entity names. In this work, we present novel techniques to improve RNN-T's ability to model rare WordPieces, infuse extra information into the encoder, enable the use of alternative graphemic pronunciations, and perform deep fusion with personalized LLMs for more robust biasing. We show that these combined techniques result in 15.4%-34.5% relative Word Error Rate improvement compared to a strong RNN-T baseline which uses shallow fusion and text-to-speech augmentation. Our work helps push the boundary of RNN-T personalization and close the gap with hybrid systems on use cases where biasing and entity recognition are crucial.

Citations (76)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.