Papers
Topics
Authors
Recent
2000 character limit reached

Exponential ergodicity in the bounded-Lipschitz distance for a subclass of piecewise-deterministic Markov processes with random switching between flows

Published 16 Nov 2020 in math.PR and math.DS | (2011.07671v3)

Abstract: In this paper, we study a subclass of piecewise-deterministic Markov processes with a Polish state space, involving deterministic motion punctuated by random jumps that occur at exponentially distributed time intervals. Over each of these intervals, the process follows a flow, selected randomly among a finite set of all possible ones. Our main goal is to provide a set of verifiable conditions guaranteeing the exponential ergodicity for such processes (in terms of the bounded Lipschitz distance), which would refer only to properties of the flows and the transition law of the Markov chain given by the post-jump locations. Moreover, we establish a simple criterion on the exponential ergodicity for a particular instance of these processes, applicable to certain biological models, where the jumps result from the action of an iterated function system with place-dependent probabilities.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.