Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Symmetric Dyck tilings, ballot tableaux and tree-like tableaux of shifted shapes (2011.07296v1)

Published 14 Nov 2020 in math.CO, math-ph, and math.MP

Abstract: Symmetric Dyck tilings and ballot tilings are certain tilings in the region surrounded by two ballot paths. We study the relations of combinatorial objects which are bijective to symmetric Dyck tilings such as labeled trees, Hermite histories, and perfect matchings. We also introduce two operations on labeled trees for symmetric Dyck tilings: symmetric Dyck tiling strip (symDTS) and symmetric Dyck tiling ribbon (symDTR). We give two definitions of Hermite histories for symmetric Dyck tilings, and show that they are equivalent by use of the correspondence between symDTS operation and an Hermite history. Since ballot tilings form a subset in the set of symmetric Dyck tilings, we construct an inclusive map from labeled trees for ballot tilings to labeled trees for symmetric Dyck tilings. By this inclusive map, the results for symmetric Dyck tilings can be applied to those of ballot tilings. We introduce and study the notions of ballot tableaux and tree-like tableaux of shifted shapes, which are generalizations of Dyck tableaux and tree-like tableaux, respectively. The correspondence between ballot tableaux and tree-like tableaux of shifted shapes is given by using the symDTR operation and the structure of labeled trees for symmetric Dyck tilings.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.