Papers
Topics
Authors
Recent
Search
2000 character limit reached

Convergence Properties of Stochastic Hypergradients

Published 13 Nov 2020 in stat.ML and cs.LG | (2011.07122v3)

Abstract: Bilevel optimization problems are receiving increasing attention in machine learning as they provide a natural framework for hyperparameter optimization and meta-learning. A key step to tackle these problems is the efficient computation of the gradient of the upper-level objective (hypergradient). In this work, we study stochastic approximation schemes for the hypergradient, which are important when the lower-level problem is empirical risk minimization on a large dataset. The method that we propose is a stochastic variant of the approximate implicit differentiation approach in (Pedregosa, 2016). We provide bounds for the mean square error of the hypergradient approximation, under the assumption that the lower-level problem is accessible only through a stochastic mapping which is a contraction in expectation. In particular, our main bound is agnostic to the choice of the two stochastic solvers employed by the procedure. We provide numerical experiments to support our theoretical analysis and to show the advantage of using stochastic hypergradients in practice.

Citations (24)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.