Papers
Topics
Authors
Recent
2000 character limit reached

Ultimate Pólya Gamma Samplers -- Efficient MCMC for possibly imbalanced binary and categorical data

Published 13 Nov 2020 in stat.CO and stat.ME | (2011.06898v5)

Abstract: Modeling binary and categorical data is one of the most commonly encountered tasks of applied statisticians and econometricians. While Bayesian methods in this context have been available for decades now, they often require a high level of familiarity with Bayesian statistics or suffer from issues such as low sampling efficiency. To contribute to the accessibility of Bayesian models for binary and categorical data, we introduce novel latent variable representations based on P\'olya-Gamma random variables for a range of commonly encountered logistic regression models. From these latent variable representations, new Gibbs sampling algorithms for binary, binomial, and multinomial logit models are derived. All models allow for a conditionally Gaussian likelihood representation, rendering extensions to more complex modeling frameworks such as state space models straightforward. However, sampling efficiency may still be an issue in these data augmentation based estimation frameworks. To counteract this, novel marginal data augmentation strategies are developed and discussed in detail. The merits of our approach are illustrated through extensive simulations and real data applications.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.