Papers
Topics
Authors
Recent
2000 character limit reached

Medical symptom recognition from patient text: An active learning approach for long-tailed multilabel distributions

Published 12 Nov 2020 in cs.CL and cs.LG | (2011.06874v2)

Abstract: We study the problem of medical symptoms recognition from patient text, for the purposes of gathering pertinent information from the patient (known as history-taking). A typical patient text is often descriptive of the symptoms the patient is experiencing and a single instance of such a text can be "labeled" with multiple symptoms. This makes learning a medical symptoms recognizer challenging on account of i) the lack of availability of voluminous annotated data as well as ii) the large unknown universe of multiple symptoms that a single text can map to. Furthermore, patient text is often characterized by a long tail in the data (i.e., some labels/symptoms occur more frequently than others for e.g "fever" vs "hematochezia"). In this paper, we introduce an active learning method that leverages underlying structure of a continually refined, learned latent space to select the most informative examples to label. This enables the selection of the most informative examples that progressively increases the coverage on the universe of symptoms via the learned model, despite the long tail in data distribution.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.