Papers
Topics
Authors
Recent
Search
2000 character limit reached

Single-pass randomized QLP decomposition for low-rank approximation

Published 13 Nov 2020 in math.NA and cs.NA | (2011.06855v2)

Abstract: The QLP decomposition is one of the effective algorithms to approximate singular value decomposition (SVD) in numerical linear algebra. In this paper, we propose some single-pass randomized QLP decomposition algorithms for computing the low-rank matrix approximation. Compared with the deterministic QLP decomposition, the complexity of the proposed algorithms does not increase significantly and the system matrix needs to be accessed only once. Therefore, our algorithms are very suitable for a large matrix stored outside of memory or generated by stream data. In the error analysis, we give the bounds of matrix approximation error and singular value approximation error. Numerical experiments also reported to verify our results.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.