Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Dependency-based Anomaly Detection: a General Framework and Comprehensive Evaluation (2011.06716v2)

Published 13 Nov 2020 in cs.LG and cs.AI

Abstract: Anomaly detection is crucial for understanding unusual behaviors in data, as anomalies offer valuable insights. This paper introduces Dependency-based Anomaly Detection (DepAD), a general framework that utilizes variable dependencies to uncover meaningful anomalies with better interpretability. DepAD reframes unsupervised anomaly detection as supervised feature selection and prediction tasks, which allows users to tailor anomaly detection algorithms to their specific problems and data. We extensively evaluate representative off-the-shelf techniques for the DepAD framework. Two DepAD algorithms emerge as all-rounders and superior performers in handling a wide range of datasets compared to nine state-of-the-art anomaly detection methods. Additionally, we demonstrate that DepAD algorithms provide new and insightful interpretations for detected anomalies.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.