Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Transience and recurrence of sets for branching random walk via non-standard stochastic orders (2011.06402v1)

Published 12 Nov 2020 in math.PR

Abstract: We study how the recurrence and transience of space-time sets for a branching random walk on a graph depends on the offspring distribution. Here, we say that a space-time set $A$ is recurrent if it is visited infinitely often almost surely on the event that the branching random walk survives forever, and say that $A$ is transient if it is visited at most finitely often almost surely. We prove that if $\mu$ and $\nu$ are supercritical offspring distributions with means $\bar \mu < \bar \nu$ then every space-time set that is recurrent with respect to the offspring distribution $\mu$ is also recurrent with respect to the offspring distribution $\nu$ and similarly that every space-time set that is transient with respect to the offspring distribution $\nu$ is also transient with respect to the offspring distribution $\mu$. To prove this, we introduce a new order on probability measures that we call the germ order and prove more generally that the same result holds whenever $\mu$ is smaller than $\nu$ in the germ order. Our work is inspired by the work of Johnson and Junge (AIHP 2018), who used related stochastic orders to study the frog model.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 4 likes.