Papers
Topics
Authors
Recent
2000 character limit reached

Optimizing Large-Scale Fleet Management on a Road Network using Multi-Agent Deep Reinforcement Learning with Graph Neural Network

Published 12 Nov 2020 in cs.LG, cs.SY, and eess.SY | (2011.06175v2)

Abstract: We propose a novel approach to optimize fleet management by combining multi-agent reinforcement learning with graph neural network. To provide ride-hailing service, one needs to optimize dynamic resources and demands over spatial domain. While the spatial structure was previously approximated with a regular grid, our approach represents the road network with a graph, which better reflects the underlying geometric structure. Dynamic resource allocation is formulated as multi-agent reinforcement learning, whose action-value function (Q function) is approximated with graph neural networks. We use stochastic policy update rule over the graph with deep Q-networks (DQN), and achieve superior results over the greedy policy update. We design a realistic simulator that emulates the empirical taxi call data, and confirm the effectiveness of the proposed model under various conditions.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.