Papers
Topics
Authors
Recent
2000 character limit reached

Linear Dilation-Erosion Perceptron for Binary Classification

Published 11 Nov 2020 in cs.LG | (2011.05989v1)

Abstract: In this work, we briefly revise the reduced dilation-erosion perceptron (r-DEP) models for binary classification tasks. Then, we present the so-called linear dilation-erosion perceptron (l-DEP), in which a linear transformation is applied before the application of the morphological operators. Furthermore, we propose to train the l-DEP classifier by minimizing a regularized hinge-loss function subject to concave-convex restrictions. A simple example is given for illustrative purposes.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.