Papers
Topics
Authors
Recent
2000 character limit reached

$(f,Γ)$-Divergences: Interpolating between $f$-Divergences and Integral Probability Metrics

Published 11 Nov 2020 in stat.ML and cs.LG | (2011.05953v3)

Abstract: We develop a rigorous and general framework for constructing information-theoretic divergences that subsume both $f$-divergences and integral probability metrics (IPMs), such as the $1$-Wasserstein distance. We prove under which assumptions these divergences, hereafter referred to as $(f,\Gamma)$-divergences, provide a notion of `distance' between probability measures and show that they can be expressed as a two-stage mass-redistribution/mass-transport process. The $(f,\Gamma)$-divergences inherit features from IPMs, such as the ability to compare distributions which are not absolutely continuous, as well as from $f$-divergences, namely the strict concavity of their variational representations and the ability to control heavy-tailed distributions for particular choices of $f$. When combined, these features establish a divergence with improved properties for estimation, statistical learning, and uncertainty quantification applications. Using statistical learning as an example, we demonstrate their advantage in training generative adversarial networks (GANs) for heavy-tailed, not-absolutely continuous sample distributions. We also show improved performance and stability over gradient-penalized Wasserstein GAN in image generation.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.