Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimizing Age-of-Information in Adversarial and Stochastic Environments (2011.05563v2)

Published 10 Nov 2020 in cs.IT, cs.PF, and math.IT

Abstract: We design efficient online scheduling policies to maximize the freshness of information delivered to the users in a cellular network under both adversarial and stochastic channel and mobility assumptions. The information freshness achieved by a policy is investigated through the lens of a recently proposed metric - Age-of-Information (AoI). We show that a natural greedy scheduling policy is competitive against any optimal offline policy in minimizing the AoI in the adversarial setting. We also derive universal lower bounds to the competitive ratio achievable by any online policy in the adversarial framework. In the stochastic setting, we show that a simple index policy is near-optimal for minimizing the average AoI in two different mobility scenarios. Further, we prove that the greedy scheduling policy minimizes the peak AoI for static users in the stochastic setting. Simulation results show that the proposed policies perform well under realistic conditions.

Citations (7)

Summary

We haven't generated a summary for this paper yet.