Deep Neural Mobile Networking
Abstract: The next generation of mobile networks is set to become increasingly complex, as these struggle to accommodate tremendous data traffic demands generated by ever-more connected devices that have diverse performance requirements in terms of throughput, latency, and reliability. This makes monitoring and managing the multitude of network elements intractable with existing tools and impractical for traditional machine learning algorithms that rely on hand-crafted feature engineering. In this context, embedding machine intelligence into mobile networks becomes necessary, as this enables systematic mining of valuable information from mobile big data and automatically uncovering correlations that would otherwise have been too difficult to extract by human experts. In particular, deep learning based solutions can automatically extract features from raw data, without human expertise. The performance of AI has achieved in other domains draws unprecedented interest from both academia and industry in employing deep learning approaches to address technical challenges in mobile networks. This thesis attacks important problems in the mobile networking area from various perspectives by harnessing recent advances in deep neural networks.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.