Papers
Topics
Authors
Recent
2000 character limit reached

Probabilistic Hosting Capacity Analysis via Bayesian Optimization

Published 10 Nov 2020 in eess.SY and cs.SY | (2011.05193v1)

Abstract: This paper studies the probabilistic hosting capacity analysis (PHCA) problem in distribution networks considering uncertainties from distributed energy resources (DERs) and residential loads. PHCA aims to compute the hosting capacity, which is defined as the maximal level of DERs that can be securely integrated into a distribution network while satisfying operational constraints with high probability. We formulate PHCA as a chance-constrained optimization problem, and model the uncertainties from DERs and loads using historical data. Due to non-convexities and a substantial number of historical scenarios being used, PHCA is often formulated as large-scale nonlinear optimization problem, thus computationally intractable to solve. To address the core computational challenges, we propose a fast and extensible framework to solve PHCA based on Bayesian Optimization (BayesOpt). Comparing with state-of-the-art algorithms such as interior point and active set, numerical results show that the proposed BayesOpt approach is able to find better solutions (25% higher hosting capacity) with 70% savings in computation time on average.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.