2000 character limit reached
On the 2-colorability of random hypergraphs (2011.04809v1)
Published 9 Nov 2020 in math.CO, cond-mat.stat-mech, and math.PR
Abstract: A 2-coloring of a hypergraph is a mapping from its vertices to a set of two colors such that no edge is monochromatic. Let $H_k(n,m)$ be a random $k$-uniform hypergraph on $n$ vertices formed by picking $m$ edges uniformly, independently and with replacement. It is easy to show that if $r \geq r_c = 2{k-1} \ln 2 - (\ln 2) /2$, then with high probability $H_k(n,m=rn)$ is not 2-colorable. We complement this observation by proving that if $r \leq r_c - 1$ then with high probability $H_k(n,m=rn)$ is 2-colorable.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.