Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On random convex chains, orthogonal polynomials, PF sequences and probabilistic limit theorems (2011.04563v1)

Published 9 Nov 2020 in math.PR

Abstract: Let $T$ be the triangle in the plane with vertices $(0,0)$, $(0,1)$ and $(0,1)$. The convex hull of $(0,1)$, $(1,0)$ and $n$ independent random points uniformly distributed in $T$ is the random convex chain $T_n$. A three-term recursion for the probability generating function $G_n$ of the number $f_0(T_n)$ of vertices of $T_n$ is proved. Via the link to orthogonal polynomials it is shown that $G_n$ has precisely $n$ distinct real roots in $(-\infty,0]$ and that the sequence $p_k{(n)}:=\mathbb{P}(f_0(T_n)=k)$, $k=1,\ldots,n$, is a Polya frequency (PF) sequence. A selection of probabilistic consequences of this surprising and remarkable fact are discussed in detail.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.