Papers
Topics
Authors
Recent
2000 character limit reached

On the pseudo-manifold of quantum states

Published 9 Nov 2020 in math.OA, math-ph, math.DG, and math.MP | (2011.04488v2)

Abstract: There are various statements in the physics literature about the stratification of quantum states, for example into orbits of a unitary group, and about generalized differentiable structures on it. Our aim is to clarify and make precise some of these statements. For A an arbitrary finite-dimensional C*-algebra and U(A) the group of unitary elements of A, we observe that the partition of the state space S(A) into U(A) orbits is not a decomposition and that the decomposition into orbit types is not a stratification (its pieces are not manifolds without boundary), while there is a natural Whitney stratification into matrices of fixed rank. For the latter, when A is a full matrix algebra, we give an explicit description of the pseudo-manifold structure (the conical neighborhood around any point). We then make some comments about the infinite-dimensional case.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.