Categorical Milnor squares and K-theory of algebraic stacks
Abstract: We introduce a notion of Milnor square of stable $\infty$-categories and prove a criterion under which algebraic K-theory sends such a square to a cartesian square of spectra. We apply this to prove Milnor excision and proper excision theorems in the K-theory of algebraic stacks with affine diagonal and nice stabilizers. This yields a generalization of Weibel's conjecture on the vanishing of negative K-groups for this class of stacks.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.