Papers
Topics
Authors
Recent
Search
2000 character limit reached

Reinforcement Learning for Autonomous Driving with Latent State Inference and Spatial-Temporal Relationships

Published 9 Nov 2020 in cs.LG | (2011.04251v2)

Abstract: Deep reinforcement learning (DRL) provides a promising way for learning navigation in complex autonomous driving scenarios. However, identifying the subtle cues that can indicate drastically different outcomes remains an open problem with designing autonomous systems that operate in human environments. In this work, we show that explicitly inferring the latent state and encoding spatial-temporal relationships in a reinforcement learning framework can help address this difficulty. We encode prior knowledge on the latent states of other drivers through a framework that combines the reinforcement learner with a supervised learner. In addition, we model the influence passing between different vehicles through graph neural networks (GNNs). The proposed framework significantly improves performance in the context of navigating T-intersections compared with state-of-the-art baseline approaches.

Citations (56)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.