Papers
Topics
Authors
Recent
Search
2000 character limit reached

A wall model based on neural networks for LES of turbulent flows over periodic hills

Published 9 Nov 2020 in physics.flu-dyn | (2011.04157v1)

Abstract: In this work, a data-driven wall model for turbulent flows over periodic hills is developed using the feedforward neural network (FNN) and wall-resolved LES (WRLES) data. To develop a wall model applicable to different flow regimes, the flow data in the near wall region at all streamwise locations are grouped together as the training dataset. In the developed FNN wall models, we employ the wall-normal distance, near-wall velocities and pressure gradients as input features and the wall shear stresses as output labels, respectively. The prediction accuracy and generalization capacity of the trained FNN wall model are examined by comparing the predicted wall shear stresses with the WRLES data. For the instantaneous wall shear stress, the FNN predictions show an overall good agreement with the WRLES data with some discrepancies observed at locations near the crest of the hill. The correlation coefficients between the FNN predictions and WRLES predictions are larger than 0.7 at most streamwise locations. For the mean wall shear stress, the FNN predictions agree very well with WRLES data. More importantly, overall good performance of the FNN wall model is observed for different Reynolds numbers, demonstrating its good generalization capacity.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.