2000 character limit reached
Reinforcement Learning for Assignment problem (2011.03909v1)
Published 8 Nov 2020 in cs.AI
Abstract: This paper is dedicated to the application of reinforcement learning combined with neural networks to the general formulation of user scheduling problem. Our simulator resembles real world problems by means of stochastic changes in environment. We applied Q-learning based method to the number of dynamic simulations and outperformed analytical greedy-based solution in terms of total reward, the aim of which is to get the lowest possible penalty throughout simulation.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.