Papers
Topics
Authors
Recent
2000 character limit reached

Reinforcement Learning for Assignment problem (2011.03909v1)

Published 8 Nov 2020 in cs.AI

Abstract: This paper is dedicated to the application of reinforcement learning combined with neural networks to the general formulation of user scheduling problem. Our simulator resembles real world problems by means of stochastic changes in environment. We applied Q-learning based method to the number of dynamic simulations and outperformed analytical greedy-based solution in terms of total reward, the aim of which is to get the lowest possible penalty throughout simulation.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.