Papers
Topics
Authors
Recent
2000 character limit reached

LBGP: Learning Based Goal Planning for Autonomous Following in Front

Published 5 Nov 2020 in cs.RO, cs.AI, and cs.LG | (2011.03125v1)

Abstract: This paper investigates a hybrid solution which combines deep reinforcement learning (RL) and classical trajectory planning for the following in front application. Here, an autonomous robot aims to stay ahead of a person as the person freely walks around. Following in front is a challenging problem as the user's intended trajectory is unknown and needs to be estimated, explicitly or implicitly, by the robot. In addition, the robot needs to find a feasible way to safely navigate ahead of human trajectory. Our deep RL module implicitly estimates human trajectory and produces short-term navigational goals to guide the robot. These goals are used by a trajectory planner to smoothly navigate the robot to the short-term goals, and eventually in front of the user. We employ curriculum learning in the deep RL module to efficiently achieve a high return. Our system outperforms the state-of-the-art in following ahead and is more reliable compared to end-to-end alternatives in both the simulation and real world experiments. In contrast to a pure deep RL approach, we demonstrate zero-shot transfer of the trained policy from simulation to the real world.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.